Abstract
The microstructural evolution and the stress-strain rate behaviour of superplastic Zn-Al eutectoid alloy were investigated by prestraining specimens at two strain rates corresponding to Regions I and II. Even though the scale of microstructure was similar, the stress-strain rate curves of differently prestrained specimens were distinctly different in the lower strain-rate regime. While Region I of low rate sensitivity was more prominent when prestrained at a lower strain rate of Region I, it was less distinct because of prestrain in Region II. The threshold stress for superplastic flow, as assessed by an extrapolation procedure, varied with the nature of prestrain. The interphase boundaries were more rounded (higher mean curvature) on prestraining on Region II, compared to Region I. The correlation between the changes in the mean curvature of phase boundaries and the threshold stress arising from the nature of prestrain was consistent with the boundary-migration controlled sliding mechanism to interpret the threshold stress for superplastic flow.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have