Abstract
The influence of processing procedures and microstructural features on the functional properties of relaxor ferroelectric ceramics are of fundamental interest and directly relevant to their applications in dielectric capacitors and electromechanical sensors/actuators. In the present work, solid solutions of 0.65(K0.5Bi0.5)TiO3-0.35(Ba0.94Ca0.06)(Ti0.93Zr0.07)O3 (0.65KBT-0.35BCZT) were processed by solid-state reaction using two different procedures, distinguished in terms of mixed or separate calcination of the KBT and BCZT components and leading to homogeneous or core-shell-type relaxor ferroelectric ceramics, respectively. Systematic research was conducted on the impact of the processing techniques and air-quenching procedures on the structure and ferroelectric and electromechanical properties. Higher remanent polarization of the separately calcined materials was ascribed to the ferroelectric nature of the core regions, along with the non-ergodic relaxor ferroelectric response in the shell, which was enhanced by the quenching process. It was also demonstrated that the thermal depolarization temperature increased significantly after quenching, from ~100 to ~160 °C for the separately calcined ceramic, and from ~50 to ~130 °C for the mixed material; moreover, these effects are linked to notable improvements in the ferroelectric tetragonal phase content by air-quenching.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have