Abstract
The microstructural changes associated with the reduced dependence of critical current density (Jc) versus thickness of thick, epitaxial YBa2Cu3O7–δ (YBCO) films on rolling-assisted biaxially textured substrates (RABiTS) were investigated. Pulsed laser deposited YBCO films varying in thickness from 1.0 to 6.4 ?m on RABiTS with an architecture of Ni–3 at.% W/Y2O3/yttrium-stabilized-zirconia/CeO2/YBCO were prepared for cross-sectional transmission electron microscopy studies. Dramatic improvements in physical properties and microstructural quality were observed resulting from the use of Ni–3 at.% W substrates, which provided a sharper texture over earlier Ni substrates, and replacement of CeO2 with Y2O3 as the seed layer within the buffers. The YBCO films showed exceptional orientation up to 6.4 μm thickness, with no misoriented grains or dead layers observed and only limited reaction between the YBCO and CeO2 cap layer. The high quality of the films was also attributed in part to the formation of a tungsten oxide layer forming at the top of the Ni–3% W substrate, limiting the growth of deleterious NiO into the conductor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.