Abstract

In this study, the as-cast microstructure and the evolution of the homogenized microstructure of large-scale industrialized Al-Cu-Mg-Ag heat-resistant aluminum alloy ingots were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive analysis (EDS), and differential scanning calorimetry (DSC). The results indicate that the dendritic segregation is evident in the ingot along the radial direction, and the grain boundaries are decorated with lots of net-shaped continuous eutectic structures. With the homogenization time extension and the homogenization temperature increase, the eutectic phases (i.e., the primary Al2Cu phase, the Al2CuMg phase, and the AlCuMgAg quaternary phase) at the grain boundaries gradually dissolve back into the matrix. Meanwhile, most of the dendritic grain boundaries gradually become sparse and thinner. Finally, it is found that the optimal homogenization regime of the Al-Cu-Mg-Ag alloy is 420 °C/5 h+480 °C/8 h+515 °C/24 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.