Abstract

Proton irradiation is a well-known useful experimental technique to study neutron irradiation-induced phenomena in reactor core materials. Type 316 austenitic stainless steel was irradiated with 2 meV protons to doses up to 10 displacement per atom at 360 °C, and the various effects of the proton irradiation on the microstructural changes were characterized with transmission electron microscopy and atom probe tomography. Typical irradiation damage mainly consisted of small dislocation loops, cavities, tiny precipitates and network dislocations. Ni and Si were enriched, whereas Cr, Mn and Mo were depleted on the grain boundaries associated with irradiation-induced segregation. Ni–Si rich clusters were also found in the matrix. A new method to prepare TEM specimens of a proton-irradiated material is suggested, which was shown to be a relatively simple and effective method to chemically eliminate the inherent surface damage induced by a conventional high-energy focused ion beam and subsequent low-energy ion milling treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call