Abstract

By means of surface mechanical attrition treatment (SMAT), nanocrystalline surface layers are produced in pure Ni plates. The average crystallite size, root mean square (r.m.s.) microstrain, dislocation density, and stored elastic energy are determined by X-ray diffraction (XRD) line profile analysis. The average crystallite size obtained by XRD is compared with the grain size observed from transmission electron microscopy (TEM) image. The high-resolution TEM (HRTEM) micrograph confirms the presence of high density of dislocations obtained by XRD, and reveals that most of dislocations distribute at the subgrain boundaries with few inside the subgrains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.