Abstract
NiMoAl coating was deposited by high velocity oxy-fuel spraying from gas-atomized powders and its tribological properties from 20 to 800 °C under unlubricated conditions were evaluated. Scanning electron microscopy, x-ray diffraction, and Raman spectroscopy were used to characterize the coating and corresponding wear tracks to determine the lubrication mechanisms. The friction coefficient of NiMoAl coating that decreased gradually with the increase of temperature exhibited the highest value of 0.8 at 20 °C and the lowest value of 0.29 at 800 °C. Meanwhile, NiMoAl coating also possessed an excellent anti-wear property and the wear rate of the coating maintained at a relatively low value at all test temperatures. Characterizations of worn surfaces revealed that the coating suffered abrasive wear at the low temperature. When the temperature elevated to 600 and 800 °C, molybdenum oxide and nickel molybdate that were formed through tribo-chemistry reactions acted as lubricants at the high temperature. In addition, NiMoAl coating experienced no obvious oxidation or phase transition on the unrubbed surface during the friction test at 800 °C, indicating that the coating performed both thermal stability and lubrication function at the high temperature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have