Abstract

Microstructure characteristics of two high-strength aluminum alloys, the 2024-T3 Al–Cu–Mg, and the new generation Al–Cu–Li alloy 2198, in the T8 and T851 tempers, were investigated in this study. For this purpose, microstructural and statistical analyses were carried out. The results showed equiaxed grains for the 2024-T3 and 2198-T851 alloys, whereas, elongated grains for the 2198-T8. Besides, the 2198-T851 alloy displayed slip bands in the grains due to the stretching stage, “51”. The 2024-T3 alloy showed at least two types of constituent particles, Al–Cu–Mg and Al–Cu–Mn–Fe–(Si); whereas Al–Cu–Li alloys showed only one type, Al–Cu–Fe, in their composition. Statistical analyses showed that the percentage of area covered by constituent particles was larger in the 2024-T3 alloy compared to the 2198 in both tempers, T8 and T851. On the other hand, the Al–Cu–Li alloys showed higher microhardness values relatively to the Al–Cu one. The differences among the nanometric phases present in Al–Cu and Al–Cu–Li alloys were analyzed by transmission electron microscopy. All the results were related to the different chemical composition and industrial thermomechanical processing of each alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.