Abstract
This paper addresses the effect of high temperature storage on the microstructural and mechanical behavior of novel SnCu–Ge solder alloys. Eutectic Sn99.3Cu0.7 solder was micro-alloyed with the addition of minor Ge as an anti-oxidant and to improve the wetting performance of the alloy. The addition of Ge significantly reduced the aging degradation of the alloy. The ultimate tensile strength and yield stress dropped within first few days of aging and the fracture strain increased with aging. The corresponding microstructure changed after annealing at 125 °C for 3 months; the average grain size of the β-tin portions of the microstructure increased with aging and the imbedded IMC particles segregated along and/or within the grains. Based on growth kinetics and activation energy arguments, we suggest that the addition of Ge restricts the Cu diffusion into the alloy and inhibits the IMC growth.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have