Abstract

Abstract Laser-irradiation of silicon-rich silicon oxides (SRSO) is a promising technique for spatially well-defined production of silicon nanocrystals (nc-Si) showing room temperature photoluminescence. In this work, we use continuous-wave (CW) laser processing to generate nc-Si in SRSO films on fused silica substrates. One main problem is damage introduced by laser processing which results in a porous layer beneath the original film surface as is consistently shown by electron tomography and energy-dispersive X-ray spectrometry. Processing conditions for damage-free nc-Si formation are identified by systematic variation of laser intensity and measuring the depth of the damaged region by transmission electron microscopy (TEM). By combining TEM imaging and analysis it is shown that the damaged region has a composition close to SiO 2 which is due to a predominant loss of silicon rather than an a result of surface oxidation during laser processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.