Abstract

This paper proposes a planar wideband microstrip feedline to a slot-line-based patch antenna for high-frequency pattern diversity applications. The antenna consists of two adjacent rectangular patches separated by the ground slots, with a directive patch slot along the edge of the substrate. A compact common feedline-to-slot configuration is used to miniaturize the antenna. The antenna is designed in stages, starting with an in-phase feedline, followed by a slot line structure, with two radiating patches on top and a director on the side. This creates radiation diversity with directive radiation patterns. The antenna was fabricated and analyzed inside a far-field anechoic chamber. The experimental results validate the return loss, gain, and radiation performance. The measured results of the antenna within a frequency range of 8.5 to 11 GHz show good agreement with the simulation. The antenna has a maximum gain of 9.2 dBi and has the potential to be beneficial for beam steering and X-band applications due to its low profile, broad bandwidth, high gain, and good directivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call