Abstract

Solid solutions, (Eu1−x La x )2O3 (0 ≤ x ≤ 1), of the rare earth sesquioxides Eu2O3 and La2O3 have been prepared by a simple soft chemistry approach. The composition and morphology of the as-synthesized oxides have been characterized using energy-dispersive spectroscopy and scanning electron microscopy. The particles are of irregular shape and submicrometre size. In order to understand the structural evolution as a function of composition, angle-dispersive X-ray diffraction measurements have been carried out and the structural parameters have been obtained through Rietveld refinement. A structural phase transition from the cubic (C-type) to the monoclinic (B-type) structure and subsequently to the hexagonal (A-type) structure was observed with an increasing substitution of La. A detailed analysis of the transition boundaries in terms of the average cationic radius, R RE, shows that the onset of the C → B transition is at R RE = 0.980 Å, whereas the B → A transition occurs at R RE = 1.025 Å. A biphasic region of cubic and monoclinic structures is observed for 0.2 ≤ x ≤ 0.4 and one of monoclinic and hexagonal structures is observed for 0.5 ≤ x ≤ 0.6. The microstrain induced by the difference in size of the rare earth cations introduces a substitutional disorder in the crystal structure, which is a plausible cause of the observed phase transitions in these oxides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call