Abstract

Changes in nerve growth factor (NGF) level and type of cells producing NGF were investigated in the rat brain after sustained cerebral embolism. The NGF level was determined by a two-site enzyme immunoassay specific for NGF. The cerebral cortex, striatum, and hippocampus of the embolized hemisphere maximally contained 2.4-, 2.4-, and 1.7-times higher NGF levels than the corresponding regions of the nonembolized hemisphere. A significant increase was transiently observed for 1 week in the cerebral cortex and striatum, whereas the increase was longer lasting, at least of 4 weeks' duration, in the hippocampus. To examine the localization of NGF-like immunoreactivity (NGF-LI), we used a newly developed anti-NGF peptide antiserum that specifically recognized a 30-kDa molecule(s) in the hippocampal extracts or in NGF cDNA-transfected cells, suggesting that the antibody predominantly reacted with the putative NGF precursor protein(s). NGF-LI, which was localized in neurons of the normal or non-embolized hemisphere, was reduced, and on the embolized side new signals emerged in small non-neuronal cells having a round shape. These included cells with common leukocyte antigen CD45 and T-lymphocyte antigen CD3, which did not appear in the normal or non-embolized hemisphere. NGF-LI and CD3 were colocalized in a substantial number of the cells, suggesting that some activated T-lymphocytes produce NGF for neuronal regeneration after sustained cerebral embolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call