Abstract
Glucose is the primary energy source for neural stem cells (NSCs), supporting their proliferation, differentiation, and quiescence. However, the high demand for glucose during brain development often exceeds its supply, leading to the utilization of alternative energy sources including ketone bodies. Ketone bodies, including β-hydroxybutyrate, are short-chain fatty acids produced through hepatic ketogenesis and play a crucial role in providing energy and the biosynthetic components for NSCs when required. The interplay between glucose and ketone metabolism influences NSC behavior and fate decisions, and disruptions in these metabolic pathways have been linked to neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Additionally, ketone bodies exert neuroprotective effects on NSCs and modulate cellular responses to oxidative stress, energy maintenance, deacetylation, and inflammation. As such, understanding the interdependence of glucose and ketone metabolism in NSCs is crucial to understanding their roles in NSC function and their implications for neurological conditions. This article reviews the mechanisms of glucose and ketone utilization in NSCs, their impact on NSC function, and the therapeutic potential of targeting these metabolic pathways in neurological disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.