Abstract

Digital Twin (DT) is a promising technology that offers versatile services to enhance manufacturing intelligence. However, the agility, reliability and analysis capabilities of existing DT services are severely challenged when applied and deployed at large-scale production lines. To address the aforementioned issues, a microservice-based DT system with redundant architecture is proposed. First, a scalable microservice-based DT system compatible with standard and tailored plug-and-play DT services is constructed for DT protocol adaptation, stream processing, information and model management. Concurrently, a generic information model is proposed to represent the entire production lifecycle from design, operation, and maintenance in a structured manner. Second, an industrial multi-task DT model is introduced, leveraging the aforementioned architecture, to effectively achieve parallel monitoring of surface roughness and tool wear. Finally, industrial manufacturing cases are introduced to verify the feasibility and effectiveness of the proposed system. The results show that heterogeneous DT data are transferred and managed reliably, with a mean absolute percentage error of 1.28% for surface roughness prediction, and 85.71% accuracy in tool wear diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.