Abstract

15 N R1ρ relaxation experiments in solid-state NMR spectroscopy are sensitive to timescales and amplitudes of internal protein motions in the hundreds of nano- to microsecond time window, which is difficult to probe by solution-state NMR spectroscopy. By using 15 N R1ρ relaxation experiments, a simplified approach to detect low microsecond protein dynamics is described and residue-specific correlation times are determined from the ratio of 15 N R1ρ rate constants at different magic angle spinning frequencies. Microcrystalline ubiquitin exhibits small-amplitude dynamics on a timescale of about 1 μs across the entire protein, and larger amplitude motions, also on the 1 μs timescale, for several sites, including the β1 -β2 turn and the N terminus of the α helix. According to the analysis, the microsecond protein backbone dynamics are of lower amplitude than that concluded in previous solid-state NMR spectroscopy studies, but persist across the entire protein with a rather uniform timescale of 1 μs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.