Abstract

We study the properties of the nuclear rotational excitations with hypothetical tetrahedral symmetry by employing the microscopic mean-field and residual-interaction Hamiltonians with angular-momentum and parity projection method; we focus on the deformed nuclei with tetrahedral doubly-closed shell configurations. We find that for pure tetrahedral deformation the obtained excitation patterns satisfy the characteristic features predicted by group-representation theory applied to the tetrahedral symmetry group. We find that a gradual transition from the approximately linear to the characteristic rigid-rotor, parabolic energy-vs.-spin dependence occurs as a function of the tetrahedral deformation parameter. The form of this transition is compared with the similar well-known transition in the case of quadrupole deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.