Abstract

Polypropylene (PP) is suitable for a broad range of applications and represents the most extensively utilized plastic in food packaging. Micro- and nano-PP plastics are prevalent categories of microplastics (MPs). However, the majority of MPs particles currently utilized in laboratory studies are man-made polystyrene (PS) spheres, and there has been limited research on micrometer- and nanoscale PP plastic particles. This study aims to employ a top-down approach in crafting micro/nanoparticle (M/NPs) models of PP particles, ensuring their enhanced relevance to real-world environments. Micro/nano PP particles, featuring a negatively charged particle size ranging from 203 to 2101 nm, were synthesized through variations in solution concentration and volume. Simultaneously, the devised MPs model was employed to develop a Raman-based qualitative and quantitative detection method for micro/nano PP particles, considering diverse sizes and concentrations. This method integrates Raman spectroscopy and microscopy to measure PP particles with varying sizes, utilizing the coffee ring effect. The Limit of detection (LOD) for 203 nm PP reached 31.25 μg/mL, while those for 382–2101 nm PP were approximately 3.9 μg/mL. The method underwent quantitative analysis by introducing 203 nm PP nanospheres into real food media (i.e., tea beverages, tea leaves), revealing a minimum LOD of approximately 31.25 μg/mL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.