Abstract
Astrophysics is in need of a broad variety of nuclear data. This concerns static ground state properties, characteristics of excited nuclei, spontaneous decay properties, or interactions of nuclei with (mainly) nucleons, α-particles or photons. A strong theoretical activity complementing laboratory efforts is also mandatory. A large variety of highly ‘exotic’ laboratory-unreachable nuclei are indeed involved in the astrophysics modelling. Even when laboratory-studied nuclei are considered, theory has very often to be called for. Mastering the huge volume of nuclear information and making it available in an accurate and usable form for incorporation into astrophysics models is clearly of pivotal importance. The recognition of this necessity has been the driving motivation for the construction of the Brussels library (BRUSLIB) of computed data of astrophysics relevance. It provides an extended information in tabular form on masses, nuclear level densities and partition functions, fission barriers, and thermonuclear reaction rates. In addition of the unprecedented broadness of its scope, BRUSLIB has the unique and most important feature of relying to the largest possible extent on global and coherent microscopic nuclear models. The models of this sort that we have developed to predict the basic properties of the nuclei and of their interactions are briefly reviewed. The content of the BRUSLIB library that relies on these models is described, as well as a user-friendly nuclear network generator (NETGEN) complementing BRUSLIB. Finally, an application of BRUSLIB and NETGEN to the p-process nucleosynthesis during He detonation in sub-Chandrasekhar CO white dwarfs is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.