Abstract
Cyclic voltammetry (CV) is a widespread experimental technique for characterizing electrochemical devices such as supercapacitors. Despite its wide use, a quantitative relation between CV and microscopic properties of supercapacitors is still lacking. In this Letter, we use both the microscopic "stack-electrode" model and its equivalent circuit for predicting the cyclic voltammetry of electric double-layer formation in porous electrodes. We find that the dimensionless combination ωτ_{n}, with ω the scan frequency of the time-dependent potential and τ_{n} the relaxation timescale of the stack-electrode model, governs the CV curves and capacitance: the capacitance is scan-rate independent for ωτ_{n}≪1 and scan-rate dependent for ωτ_{n}≫1. With a single fit parameter and all other model parameters dictated by experiments, our model reproduces experimental CV curves over a wide range of ω. Meanwhile, the influence of the pore size distribution on the charging dynamics is investigated to explain the experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.