Abstract

The detection limit of infrared thermographic investigations can be improved down to 10 μK by using a highly sensitive high-speed infrared camera in an on-line averaging lock-in thermography system. Together with a microscope objective, this allows lock-in thermography to be used as a simple and sensitive technique to localize the sites of leakage currents and other heat sources in electronic components. The practical realization of a novel lock-in thermography system is described and both test measurements and practical applications are introduced. The detection limit for surface-near local heat sources in silicon is a few microwatts with a spatial resolution down to 5 μm. Leakage sites in several microelectronic structures are imaged and assigned to the layout of the integrated circuit by comparing direct images with lock-in ones. The direct comparison of an averaged and background-subtracted stationary thermogram with a lock-in one, both measured under similar conditions at the same sample, clearly demonstrates the gain in information obtained by using lock-in thermography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.