Abstract
We introduce a novel microscopic image dataset augmented with segmentation and detection labels specifically designed for microplastic analysis in sewage environments. Recognizing the increasing concern over microplastics—particles of synthetic polymers smaller than 5 mm—and their detrimental effects on marine ecosystems and human health, our research focuses on enhancing detection and analytical methodologies through advanced computer vision and deep learning techniques. The dataset comprises high-resolution microscopic images of microplastics collected from sewage, meticulously labeled for both segmentation and detection tasks, aiming to facilitate accurate and efficient identification and quantification of microplastic pollution. In addition to dataset development, we present example deep learning models optimized for segmentation and detection of microplastics within complex sewage samples. The models demonstrate significant potential in automating the analysis of microplastic contamination, offering a scalable solution to environmental monitoring challenges. Furthermore, we ensure the accessibility and reproducibility 12 of our research by making the dataset and model codes publicly available, accompanied by detailed 13 documentation on GitHub and LabelBox.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.