Abstract

A method is outlined for analyzing the interacting boson model microscopically in terms of S- and D-fermion pairs. We derive the number operator approximation (NOA) of Otsuka and Arima by considering functions that generate normalizations and matrix elements of states built of S-pairs. An extension of the formalism leads to a generalization of the NOA including both S and D. This approximation is suggested as a starting point for determining the collective SD subspace in a dynamical way. The simplified fermion problem that results from restriction of the hamiltonian to the SD subspace can be mapped onto a corresponding sd boson problem. Due to the finiteness of the fermion space, and the non-orthogonality of the collective SD basis, the boson hamiltonian obtained is non-hermitian.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.