Abstract

BackgroundIdentification and characterization of key enzymes associated with cell wall biosynthesis and modification is fundamental to gain insights into cell wall dynamics. However, it is a challenge that activity assays of glycosyltransferases are very low throughput and acceptor substrates are generally not available.ResultsWe optimized and validated microscale thermophoresis (MST) to achieve high throughput screening for glycosyltransferase substrates. MST is a powerful method for the quantitative analysis of protein–ligand interactions with low sample consumption. The technique is based on the motion of molecules along local temperature gradients, measured by fluorescence changes. We expressed glycosyltransferases as YFP-fusion proteins in tobacco and optimized the MST method to allow the determination of substrate binding affinity without purification of the target protein from the cell lysate. The application of this MST method to the β-1,4-galactosyltransferase AtGALS1 validated the capability to screen both nucleotide-sugar donor substrates and acceptor substrates. We also expanded the application to members of glycosyltransferase family GT61 in sorghum for substrate screening and function prediction.ConclusionsThis method is rapid and sensitive to allow determination of both donor and acceptor substrates of glycosyltransferases. MST enables high throughput screening of glycosyltransferases for likely substrates, which will narrow down their in vivo function and help to select candidates for further studies. Additionally, this method gives insight into biochemical mechanism of glycosyltransferase function.

Highlights

  • Identification and characterization of key enzymes associated with cell wall biosynthesis and modification is fundamental to gain insights into cell wall dynamics

  • Some commercial (UDP/ CMP/GDP-GloTM, Promega) and reported glycosylation assays are based on detection of UDP or GDP released during the reaction through coupling to another reaction [5, 6] making them more suitable for high throughput studies, but they still depend on acceptor substrates

  • The well-characterized Arabidopsis thaliana β‐1,4‐galactan synthase 1 (AtGALS1), which catalyzes the elongation of pectic β‐1,4‐galactan chains using UDPGal as donor substrate [25], was used to test the buffer formulation and conditions

Read more

Summary

Introduction

Identification and characterization of key enzymes associated with cell wall biosynthesis and modification is fundamental to gain insights into cell wall dynamics. It is a challenge that activity assays of glycosyltransferases are very low throughput and acceptor substrates are generally not available. The principal enzymes responsible for glycosylation are glycosyltransferases (GTs). GTs use activated sugars, usually nucleotide sugars (NDP-sugars), as donor substrate [2]. Unique assays must be developed for every glycosylated product studied. Determining the function of a GT currently requires correct identification of both donor and acceptor substrates in addition to the development of an assay for product identification. Some commercial (UDP/ CMP/GDP-GloTM, Promega) and reported glycosylation assays are based on detection of UDP or GDP released during the reaction through coupling to another reaction [5, 6] making them more suitable for high throughput studies, but they still depend on acceptor substrates

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call