Abstract

BackgroundThe occurrence, development, and outbreak of tea diseases and pests pose a significant challenge to the quality and yield of tea, necessitating prompt identification and control measures. Given the vast array of tea diseases and pests, coupled with the intricacies of the tea planting environment, accurate and rapid diagnosis remains elusive. In addressing this issue, the present study investigates the utilization of transfer learning convolution neural networks for the identification of tea diseases and pests. Our objective is to facilitate the accurate and expeditious detection of diseases and pests affecting the Yunnan Big leaf kind of tea within its complex ecological niche.ResultsInitially, we gathered 1878 image data encompassing 10 prevalent types of tea diseases and pests from complex environments within tea plantations, compiling a comprehensive dataset. Additionally, we employed data augmentation techniques to enrich the sample diversity. Leveraging the ImageNet pre-trained model, we conducted a comprehensive evaluation and identified the Xception architecture as the most effective model. Notably, the integration of an attention mechanism within the Xeption model did not yield improvements in recognition performance. Subsequently, through transfer learning and the freezing core strategy, we achieved a test accuracy rate of 98.58% and a verification accuracy rate of 98.2310%.ConclusionsThese outcomes signify a significant stride towards accurate and timely detection, holding promise for enhancing the sustainability and productivity of Yunnan tea. Our findings provide a theoretical foundation and technical guidance for the development of online detection technologies for tea diseases and pests in Yunnan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.