Abstract

Mesoporous silica SBA-15 meets most criteria for selection of water treatment adsorbents such as high specific surface area, large pore-size, chemical inertness, repertory of surface functional groups, good thermal stability, selectivity, regenerability, and low cost of manufacture. However, its use for water treatment is still largely unexplored. SBA-15 and its functionalized derivatives of aminopropyltriethoxysilane (SA) and tripolyphosphate (ST) were synthesized, characterized, and used to investigate pentachlorophenol (PCP) removal from aqueous solutions. Functionalization improved SBA-15 capacity for PCP removal from solution in accordance with the trend SBA-15 < ST < SA. Sorption rate experiments data fit the Lagergren pseudo-second order kinetics model. Intra-particle diffusion indicated that the sorption is controlled by two mechanisms: intra-particle and equilibrium diffusion. Adsorptive pore-filling and electrostatic interactions were implicated in the removal of PCP from solution. Electrostatic interaction led to ≥75% increase in sorption upon functionalization. The equilibrium sorption data of the PCP on these mesoporous materials fits the Freundlich isotherm. Desorption hysteresis was low for the pristine SBA-15, but the functionalized SBA-15 materials showed higher hysteresis. The results imply that functionalized SBA-15 sorbents are promising materials for microscale scavenging of PCP in solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call