Abstract
This work presents the design and demonstration of a microscale inverse acoustic band gap (IABG) structure in aluminum nitride (AlN) with a frequency stop band for bulk acoustic waves in the very high frequency range. Conversely to conventional microscale acoustic band gaps, the IABG is formed by a two-dimensional periodic array of unit cells consisting of a high acoustic velocity material cylinder surrounded by a low acoustic velocity medium. The periodic arrangement of the IABG array induces scattering of incident acoustic waves and generates a stop band, whose center frequency is primarily determined by the lattice constant of the unit cell and whose bandwidth depends on the cylinder radius, the film thickness, and the size of the tethers that support the cylinder. A wide band gap (>13% of the center frequency) is formed by the IABG even when thin AlN films are used. The experimental response of an IABG structure having a unit cell of 8.6 μm and an AlN film thickness of 2 μm confirms the existence of a...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.