Abstract
In the wheat (Triticum aestivum L.) inflorescence, spikelets are arranged in two opposite rows on the main axis. Spikelet primordia initiate alternately on opposite sides at angles of 180°. Genotypes exhibiting screwed spike rachis (SCR) have been selected as a gene resource having non-standard spike morphology in wheat. Although the SCR phenotype is a prospective gene resource, it is under-utilized. The SCR phenotype is due to the attachment of spikelets to the rachis nodes on the SCR. Seed number and individual kernel size are critical economic parameters and increasing seed number and single grain weight causes competition among the growing seeds. The SCR phenotype is hypothesized to avoid competition by assuring kernel growth space in each floret. The SCR trait has been observed in spikes and peduncles of KM 60-96. The semi-dwarfism of KM 60-96 was GA3-sensitive, and it was determined by the presence of Rht8 gene. The response of KM 60-96 to microtubule depolymerizing and stabilizing drugs indicated that the SCR phenotype was not caused by a defect in the α-Tubulin gene. The F2 of two hexaploid hybrids and a pentaploid hybrid between SCR/normal types segregated 3 SCR:1 normal indicating that the SCR phenotype was determined by a single dominant gene, Scr1. Analysis with microsatellite markers indicated that the Scr1 allele was located in the region between markers Xgwm191 and Xgwm371 in chromosome arm 5BL. From the observation of the backcross generation, introgression of the Scr1 allele into locally adapted wheat cultivars is feasible to increase kernel growth space in each spikelet in the limited spike length.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have