Abstract
Red pine (Pinus resinosa Ait.) is an ecologically and economically important forest tree species of northeastern North America and is considered one of the most genetically depauperate conifer species in the region. We have isolated and characterized 13 nuclear microsatellite loci by screening a partial genomic library with di-, tri-, and tetranucleotide repeat oligonucleotide probes. In an analysis of over 500 individuals representing 17 red pine populations from Manitoba through Newfoundland, five polymorphic microsatellite loci with an average of nine alleles per locus were identified. The mean expected and observed heterozygosity values were 0.508 and 0.185, respectively. Significant departures from Hardy-Weinberg equilibrium with excess homozygosity indicating high levels of inbreeding were evident in all populations studied. The population differentiation was high with 28-35% of genetic variation partitioned among populations. The genetic distance analysis showed that three northeastern (two Newfoundland and one New Brunswick) populations are genetically distinct from the remaining populations. The coalescence-based analysis suggests that "northeastern" and "main" populations likely became isolated during the most recent Pleistocene glacial period, and severe population bottlenecks may have led to the evolution of a highly selfing mating system in red pine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.