Abstract
Forest musk deer ( Moschus berezovskii) are rare as a result of poaching for musk and habitat loss. Some captive populations of forest musk deer have been established for decades in China. However, little genetic information is available for conservation management. In this paper, genetic variations, population structures, and the genetic bottleneck hypothesis were examined using 11 microsatellite loci from captive populations in Miyalo, Jinfeng and Maerkang in Sichuan Province, China. Estimates of genetic variability revealed substantial genetic variation in the three populations. A total of 142 different alleles were observed in 121 forest musk deer and the effective number of alleles per locus varied from 6.76 to 12.95. The average values of observed heterozygosity, expected heterozygosity, and Nei's expected heterozygosity were 0.552, 0.899 and 0.894 respectively. The overall significant ( P < 0.001) deficit of heterozygotes because of inbreeding within breeds amounted to 34.5%. The mean F ST ( P < 0.001) showed that approximately 90.2% of the genetic variation was within populations and 9.8% was across populations. The UPGMA diagram, based on Nei's unbiased genetic distance, indicated that the three populations were differentiated into two different groups and it agreed with their origin and history. Bottleneck tests indicated that all three populations have undergone a population bottleneck, suggesting a small effective population size. Acknowledging that the genetic structure of populations has crucial conservation implications, the present genetic information should be taken into account in management plans for the conservation of captive forest musk deer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have