Abstract

Artificial scotomas positioned within peripheral dynamic noise fade perceptually during visual fixation (that is, the surrounding dynamic noise appears to fill-in the scotoma). Because the scotomas' edges are continuously refreshed by the dynamic noise background, this filling-in effect cannot be explained by low-level adaptation mechanisms (such as those that may underlie classical Troxler fading). We recently showed that microsaccades counteract Troxler fading and drive first-order visibility during fixation (S. Martinez-Conde, S. L. Macknik, X. G. Troncoso, & T. A. Dyar, 2006). Here we set out to determine whether microsaccades may counteract the perceptual filling-in of artificial scotomas and thus drive second-order visibility. If so, microsaccades may not only counteract low-level adaptation but also play a role in higher perceptual processes. We asked subjects to indicate, via button press/release, whether an artificial scotoma presented on a dynamic noise background was visible or invisible at any given time. The subjects' eye movements were simultaneously measured with a high precision video system. We found that increases in microsaccade production counteracted the perception of filling-in, driving the visibility of the artificial scotoma. Conversely, decreased microsaccades allowed perceptual filling-in to take place. Our results show that microsaccades do not solely overcome low-level adaptation mechanisms but they also contribute to maintaining second-order visibility during fixation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.