Abstract

Tse (2005) recently introduced a new class of illusory brightness changes where shifts of attention lead to shifts in perceived brightness across overlapping, transparent figures, under conditions of visual fixation. In the absence of endogenous attentional shifts, illusory brightness changes appear to shift from figure to figure spontaneously, much as occurs in other multistable phenomena. The goal of the present research is to determine whether fixational microsaccades are correlated with perceived brightness changes. It has recently been demonstrated that microsaccades can reveal the direction of covert attentional shifts either toward (Engbert, R. & Kliegl, R. (2003). Microsaccades uncover the orientation of covert attention. Vision Research, 43, 1035–1045; Hafed, Z. M. & Clark, J. J. (2002). Microsaccades as an overt measure of covert attention shifts. Vision Research, 42(22), 2533–2545) or away from (Rolfs, M., Engbert, R., & Kliegl, R. (2004). Microsaccade orientation supports attentional enhancement opposite a peripheral cue: commentary on Tse, Sheinberg, and Logothetis (2003). Psychological Science, 15(10), 705–707) a peripheral cue under certain circumstances. Others (Horwitz, G. D. & Albright, T. D. (2003). Short-latency fixational saccades induced by luminance increments. Journal of Neurophysiology, 90(2), 1333–1339; Tse, P. U., Sheinberg, D. L., & Logothetis, N. K. (2002). Fixational eye movements are not affected by abrupt onsets that capture attention. Vision Research, 42, 1663–1669; Tse, P. U., Sheinberg, D. L., & Logothetis, N. K. (2004). The distribution of microsaccade directions need not reveal the location of attention. Psychological Science, 15(10), 708–710) found no change in the distribution of microsaccade directions as a function of where attention is allocated, although changes in the rate of microsaccades were observed in all of these studies in response to the onset of attentional reallocation. It is therefore possible that the distribution of microsaccade directions will change as a function of which figure is perceived to darken, or that changes in this distribution predict which figure will subsequently darken. We find no correlation between this distribution and which figure undergoes the effect, and therefore conclude that microsaccade directionality is not influenced by and does not influence which figure undergoes the effect. Moreover, the directions of microsaccades that occur immediately prior to a perceptual switch are not correlated with the perceived position of the figure that undergoes the effect. However, we do find that the rate of microsaccades decreases upon a perceptual switch, signifying an attentional shift coincident with the perceptual shift. We conclude that microsaccade directionality does not determine, predict, or cause which figure will subsequently be perceived to undergo an illusory brightness change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call