Abstract

The identification of non-coding RNA species, previously thought of as 'junk' DNA, adds a new dimension of complexity to the regulation of DNA, RNA and protein. MicroRNAs are short non-coding RNA species that control gene expression, are dysregulated in settings of cardiac and skeletal muscle disease and have emerged as promising therapeutic targets. MicroRNAs specifically enriched in cardiac and skeletal muscle are called myomiRs and play an important role in cardiac pathology and skeletal muscle biology. Moreover, microRNA profiles are altered in response to exercise and disease; thus, their potential as therapeutic drug targets is being widely explored. In the cardiovascular field, therapeutic inhibition of microRNAs has been shown to be effective in improving cardiac outcome in preclinical cardiac disease models. MicroRNAs that promote skeletal muscle regeneration are attractive therapeutic targets in muscle wasting conditions where regenerative capacity is compromised.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.