Abstract

BackgroundOsteosarcoma (OS) is a rare, malignant bone tumor that primarily affects adolescents and has a high degree of malignancy and high incidence of recurrence and metastasis. Our study aimed to explore the role of miR-338-3p in OS cells.MethodsqRT-qPCR was performed to quantify miR-338-3p expression levels in OS tissue samples and in three common OS cell lines. MG-63 and Saos2 cells were separately transfected with miR-338-3p or NC mimics and miR-338-3p expression levels was determined by qRT-PCR. Cell proliferation was monitored using the Cell Counting Kit-8. Flow cytometer analysis was carried out to determine the distribution of cell cycle stages and apoptosis. Transwell assay was performed to measure the migratory and invasive capacities of MG-63 and Saos2 cells. The expression of Vimentin and E-cadherin was detected by western blot. Luciferase reporter assay, qRT-PCR and western blotting were performed to confirm the target of miR-338-3p.ResultsAnalysis by qRT-PCR revealed that miR-338-3p was downregulated in the tissue samples of 20 OS patients when compared with that in their matched adjacent non-tumor tissues. Furthermore, miR-338-3p was significantly downregulated in three common OS cell lines, namely, MG-63, Saos2, and HOS, when compared with that in the human osteoblast cell line hFOB1.19. Analysis by luciferase reporter assay, qRT-PCR, and western blotting revealed that activator of 90 kDa heat shock protein ATPase homolog 1 (AHSA1) is a direct target of miR-338-3p. miR-338-3p overexpression led to significant reduction in AHSA1 protein levels in MG63 and Saos2 cells. miR-338-3p overexpression reduced cell viability and migration and invasion behavior of MG63 and Saos2 cells. In addition, miR-338-3p overexpression suppressed epithelial–mesenchymal transition (EMT), induced a significant G1-phase arrest and did not affect the apoptosis in both MG-63 and Saos2 cells. Moreover, overexpression of AHSA1 reversed the inhibitory effect of miR-338-3p overexpression on proliferation, cell cycle, apoptosis, EMT, migration, and invasion of MG63 and Saos2 cells, thereby suggesting that miR-338-3p acts as a tumor suppressor in OS cells by targeting AHSA1.ConclusionsmiR-338-3p/AHSA1 can serve as a potential therapeutic target for OS therapy.

Highlights

  • Osteosarcoma (OS) is a rare, malignant bone tumor that primarily affects adolescents and has a high degree of malignancy and high incidence of recurrence and metastasis

  • Our results showed that miR-338-3p is downregulated in OS tissues and cell lines. miR-338-3p overexpression inhibited viability, epithelial–mesenchymal transition (EMT), migration, and invasion in MG63 and Saos2 cells

  • Our results revealed that miR-338-3p was significantly downregulated in osteosarcoma cell lines when compared with that in hFOB1.19 (Fig. 1b)

Read more

Summary

Introduction

Osteosarcoma (OS) is a rare, malignant bone tumor that primarily affects adolescents and has a high degree of malignancy and high incidence of recurrence and metastasis. Elucidating the molecular mechanisms underlying OS will contribute to the development of effective strategies for OS treatment and prognosis. The fundamental molecular mechanisms underlying the development of OS remain unclear. Oncogene or tumor suppressor gene-regulation disorders can trigger consistent cell proliferation, migration and invasion, and thereby accelerate OS development [4]. Our previous study showed that AHSA1 has a higher expression profile in OS cells and knock-down of ASHA1 could suppress cell growth, migration and invasion, revealing the oncogenic role of ASHA1 in OS [6]. The regulation mechanism on the higher expression profile of ASHA1 in OS cells is not clear

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call