Abstract

Skeletal metastasis is the major problem in the management of prostate cancer (PCa). Even though the regulatory role of microRNAs (miRNAs) in the control of tumor metastases has been well described in numerous types of cancer, the importance in bone metastasis of PCa remains largely unknown. In the present study, the differentially expressed miRNAs were identified between the primary PCa and bone metastatic PCa samples by comparing their expression profiling using miRNA microarray, and 4 miRNAs (miR‑335, ‑543, ‑196 and ‑19a) were noted to be significantly downregulated in bone metastasis compared with primary PCa. Among those, the downregulation of 2 miRNAs (miR‑335 and ‑543) was confirmed in a total of 20 paired primary PCa and bone metastasis samples using reverse transcription‑quantitative polymerase chain reaction. Using the online target prediction tool, endothelial nitric oxide synthase (eNOS) was found to be a shared target of miR‑335 and ‑543, which was further verified using the luciferase assay. By examining the expression pattern of eNOS in primary PCa and skeletal metastatic samples, the mRNA and protein expression levels of eNOS were markedly upregulated in the metastatic samples. Furthermore, exogenous overexpression of miR‑335 and ‑543 significantly downregulated the expression level of eNOS, and substantially compromised the ability of migration and invasion in vitro. These findings suggested that miR‑335 and ‑543 are associated with bone metastasis of PCa and indicated that they may have important roles in the bone metastasis, which may also be clinically used as novel biomarkers in discriminating the different stages of human PCa and predicting bone metastasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.