Abstract

The principal problem arising from prostate cancer (PCa) is its propensity to metastasize to bone. MicroRNAs (miRNAs) play a crucial role in many tumor metastases. The importance of miRNAs in bone metastasis of PCa has not been elucidated to date. We investigated whether the expression of certain miRNAs was associated with bone metastasis of PCa. We examined the miRNA expression profiles of 6 primary and 7 bone metastatic PCa samples by miRNA microarray analysis. The expression of 5 miRNAs significantly decreased in bone metastasis compared with primary PCa, including miRs-508-5p, -145, -143, -33a and -100. We further examined other samples of 16 primary PCa and 13 bone metastases using real-time PCR analysis. The expressions of miRs-143 and -145 were verified to down-regulate significantly in metastasis samples. By investigating relationship of the levels of miRs-143 and -145 with clinicopathological features of PCa patients, we found down-regulations of miRs-143 and -145 were negatively correlated to bone metastasis, the Gleason score and level of free PSA in primary PCa. Over-expression miR-143 and -145 by retrovirus transfection reduced the ability of migration and invasion in vitro, and tumor development and bone invasion in vivo of PC-3 cells, a human PCa cell line originated from a bone metastatic PCa specimen. Their upregulation also increased E-cadherin expression and reduced fibronectin expression of PC-3 cells which revealed a less invasive morphologic phenotype. These findings indicate that miRs-143 and -145 are associated with bone metastasis of PCa and suggest that they may play important roles in the bone metastasis and be involved in the regulation of EMT Both of them may also be clinically used as novel biomarkers in discriminating different stages of human PCa and predicting bone metastasis.

Highlights

  • Prostate cancer (PCa) is the most frequently diagnosed malignant tumor and the second leading cause of cancer deaths in western countries [1]

  • We demonstrated that the upregulations of miRs-143 and -145 repressed migration and invasion in vitro, tumor development and bone invasion in vivo, and Epithelial-mesenchymal transition (EMT) of PC-3 cells, a human PCa cell line originated from a bone metastatic PCa specimen

  • We found that the expression of 5 miRNAs had statistically significant decreased in bone metastasis compared with primary PCa, including miRs-508-5p, -145, -143, -33a and -100 with the reduction of 4.1fold, 8.1-fold, 5.7-fold, 3.2-fold and 5.3-fold, respectively

Read more

Summary

Introduction

Prostate cancer (PCa) is the most frequently diagnosed malignant tumor and the second leading cause of cancer deaths in western countries [1]. Skeletal metastases occur in as many as 90% of patients with advanced PCa. Importantly, once tumors metastasize to bone, they are virtually incurable and result in significant morbidity prior to a patient’s death [2,3]. Skeletal metastasis of tumor is a complicated multi-step process that includes cellular disengagement and motility from the local microenvironment, degradation of the surrounding extracellular matrix, cellular movement, arrested at distal capillaries, extravasate and proliferate to form distant secondary bone tumors. All of these processes are regulated by multiple factors and molecular pathways [4]. Basic knowledge related to this structured process has increased recently, many of the key elements are still poorly understood

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call