Abstract

ADP-ribosylation factor 6 (ARF6) is a well-studied protein that is involved in multiple biological functions including cell migration and invasion. The mechanism by which ARF6 regulates the migration and invasion of upper tract urothelial carcinoma (UTUC) is still unknown. MiR-145-5p is a tumor suppressor microRNA, which is downregulated in several cancer types. We aimed to elucidate the molecular mechanism underlying the regulation of ARF6 by miR-145-5p in UTUC. ARF6 expression was observed to be higher in UTUC tissues than paired adjacent normal tissues. A reverse correlation between ARF6 and miR-145-5p was found in UTUC tissues. MiR-145-5p inhibited ARF6 expression by directly targeting its 3'-UTR. The functional studies indicated that ARF6 expression reversed the miR-145-5p-reduced tumor cell migration and invasion. Notably, miR-145-5p reduced MMP2, N-cadherin, FAK and MMP7, and elevated E-cadherin protein levels in vitro; however, the above effects were reversed by ARF6. Further, the expression of epithelial-to-mesenchymal transition (EMT) markers and cell invasion was suppressed by knocking down MMP7 in UTUC cells. These findings suggest that miR-145-5p may suppress UTUC cell motility and invasion by targeting ARF6/MMP7 through EMT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call