Abstract
Pancreatic cancer is one of deadly cancers and is responsible for significant mortality and morbidity across the globe. The unavailability of the efficient chemotheruptic drugs and the potent thereuprtic targets forms a bottleneck in the treatment of pancreatic cancer. In this study we explored the potential of MicroRNA-1179 as the therapeutic target for the treatment of pancreatic cancer. The results of this study indicated that the expression of miR-1179 was significantly downregulated in the pancreatic cancer cell lines as compared to the normal pancreatic cells. To unveil the potential role of miR-1179, it was overexpressed in the pancreatic cancer cells. It was observed that ectopic expression of miR-1179 caused reduction in the proliferation of pancreatic cancer cells by triggering G0/G1 cell cycle arrest. Further, overexpression of miR-1179 caused inhibition of the cell migration and invasion of the pancreatic cancer cells. To find out the potential target of miR-1179 in pancreatic cancer cells, we carried out bioinformatic analysis, the results showed that miR-1179 targets E2F transcription factor 5. This was also confirmed by western blotting analysis wherein in overexpression of miR-1179 was associated with the downregulation of the expression E2F5. Conversely, silencing of E2F5 had similar effects as that of miR-1179 suppression. Further, E2F5 overexpression could also nullify the effect on cell proliferation, migration and invasion in pancreatic cancer cells. Finally, miR-1179 overexpression could also inhibit tumor growth in vivo by suppressing the expression of E2F5. Taken together, we conclude that miR-1179 overexpression may prove beneficial for the treatment of pancreatic cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.