Abstract
Clostridioides difficile is a major cause of nosocomial post-antibiotic infections, often resulting in severe inflammation and watery diarrhea. Previous studies have highlighted the role of C. difficile flagellin FliC in activating the TLR5 receptor and triggering NF-κB cell signaling, leading to the release of pro-inflammatory cytokines. However, the microRNAs (miRNAs) mediated regulatory mechanisms underlying the FliC-induced inflammatory response remain unclear. miRNA expression levels were analyzed in Caco-2 intestinal epithelial cells following FliC stimulation, infection with the epidemic C. difficile R20291 strain, or its unflagellated mutant by RT-qPCR. Chemical inhibitors were used to block NF-κB signaling, and their impact on miR-27a-5p expression was assessed. Knockdown and overexpression experiments with miRNA inhibitor and mimic were conducted to elucidate miR-27a-5p's functional role in FliC-induced inflammatory responses. Additionally, a mouse model of C. difficile infection was treated with miR-27a-5p to evaluate its therapeutic potential in vivo. miR-27a-5p showed significant FliC-dependent overexpression in Caco-2 cells. Inhibition of NF-κB signaling suppressed miR-27a-5p overexpression. Knockdown of miR-27a-5p increased NF-κB activation and TNF-α and IL-8 cytokine production, while its overexpression had the opposite effect. Moreover, miR-27a-5p was overexpressed in the caeca of C. difficile-infected mice, correlating with intestinal IL-8 levels. Treatment of infected mice with miR-27a-5p mimic reduced disease severity and intestinal inflammation. miR-27a-5p plays a crucial role in regulating C. difficile-induced inflammation, suggesting its potential as a therapeutic target for controlling severe infection. These findings offer valuable insights into potential therapeutic strategies for managing C. difficile infection and associated inflammatory complications.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have