Abstract
Introduction: Obesity is a main global health issue and an outstanding cause of morbidity and mortality. Exploring miRNA profiling may help further studies on obesity. Methods: Three morbidly obese and 5 normal-weight Chinese women were enrolled in the microarray testing group. Abdominal subcutaneous adipose tissue (SAT) samples were excised. Total RNAs including miRNAs were extracted. Affymetrix GeneChip miRNA 4.0 Array was used to compare the expression profiles of miRNAs between the 2 groups. Two algorithms, miRanda and TargetScan, were used to predict target messenger RNAs (mRNAs). Bioinformatics analysis was then done based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The sample sizes were further expanded to 8 morbidly obese and 9 normal-weight subjects, and quantitative real-time PCR (qRT-PCR) was utilized to verify the expression of differential miRNAs and target genes. Results: As per the microarray assay, 58 miRNAs were differentially expressed in the SAT from the morbidly obese and normal-weight groups (Fold >4, p < 0.01, FDR <0.05); 54 of these were downregulated and 4 were upregulated in morbidly obese subjects. A total of 1,333 target genes were jointly predicted by miRanda and TargetScan. Further bioinformatics analysis showed that the differential miRNAs were involved in 269 significant biological functions and 89 significant signaling pathways. The validation experiment by qRT-PCR showed that the expression levels of miRNA-143-5p, miRNA-143-3p, miRNA-145-5p, and let-7a-5p were downregulated in morbidly obese subjects, consistent with the microarray detection. High-mobility group A2 (HMGA2), a target gene of the downregulated miRNA let-7a-5p, was first found to be upregulated 3.19-fold in the SAT of morbidly obese Chinese women when compared to normal-weight controls. Conclusions: MiRNA downregulation is a hallmark of intact SAT in a morbidly obese state. Transcription (DNA-dependent), small-molecule metabolic processes, the MAPK signaling pathway, and cancer-related pathways may play important roles in the occurrence and development of obesity. For the first time, we proved that HMGA2, a target gene of let-7a-5p, is upregulated in the SAT of morbidly obese Chinese women.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.