Abstract

Solid tumors can be resistant or develop resistance to radiotherapy. The purpose of this study is to explore whether microRNA-302 is involved in radioresistance and can be exploited as a sensitizer to enhance sensitivity of breast cancer cells to radiation therapy. MiR-302 expression levels in radioresistant cell lines were analyzed in comparison with their parent cell lines. Furthermore, we investigated whether enforced expression of miR-302 sensitized radioresistant breast cancer cells to ionizing radiation in vitro and in vivo. MiR-302 was downregulated in irradiated breast cancer cells. Additionally, the expression levels of miR-302a were inversely correlated with those of AKT1 and RAD52, two critical regulators of radioresistance. More promisingly, miR-302a sensitized radioresistant breast cancer cells to radiation therapy in vitro and in vivo and reduced the expression of AKT1 and RAD52. Our findings demonstrated that decreased expression of miR-302 confers radioresistance and restoration of miR-302 baseline expression sensitizes breast cancer cells to radiotherapy. These data suggest that miR-302 is a potential sensitizer to radiotherapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.