Abstract
Drug-induced liver injury, or DILI, affects numerous patients and also presents significant challenges in drug development. It has been attempted to predict DILI of a chemical by in silico approaches, including data-driven machine learning models. Herein, we report a recent DILI deep-learning effort that utilized our molecular representation concept by manifold embedding electronic attributes on a molecular surface. Local electronic attributes on a molecular surface were mapped to a lower-dimensional embedding of the surface manifold. Such an embedding was featurized in a matrix form and used in a deep-learning model as molecular input. The model was trained by a well-curated dataset and tested through cross-validations. Our DILI prediction yielded superior results to the literature-reported efforts, suggesting that manifold embedding of electronic quantities on a molecular surface enables machine learning of molecular properties, including DILI. The concept encodes the quantum information of a molecule that governs intermolecular interactions, potentially facilitating the deep-learning model development and training.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.