Abstract
Urokinase-type plasminogen activator (uPA) and c-met play a major role in cancer invasion and metastasis. Evidence has suggested that uPA and c-met overexpression may be coordinated in human hepatocellular carcinoma (HCC). In the present study, to understand whether the expression of these genes might be coregulated by specific microRNAs (miRs) in human cells, we predicted that Homo sapiens microRNA-23b could recognize two sites in the 3'-UTR of uPA and four sites in the c-met 3'-UTR by the algorithm pictar. The miR-23b expression analysis in human tumor and normal cells revealed an inverse trend with uPA and c-met expression, indicating that uPA and c-met negative regulation might depend on miR-23b expression. Transfection of miR-23b molecules in HCC cells (SKHep1C3) led to inhibition of protein expression of the target genes and caused a decrease in cell migration and proliferation capabilities. Furthermore, anti-miR-23b transfection in human normal AB2 dermal fibroblasts upregulated the expression of endogenous uPA and c-met. Cotransfection experiments in HCC cells of the miR-23b with pGL4.71 Renilla luciferase reporter gene constructs, containing the putative uPA and c-met 3'-UTR target sites, and with the pGL3 firefly luciferase-expressing vector showed a decrease in the relative luciferase activity. This would indicate that miR-23b can recognize target sites in the 3'-UTR of uPA and of c-met mRNAs and translationally repress the expression of uPA and c-met in HCC cells. The evidence obtained shows that overexpression of miR-23b leads to uPA and c-met downregulation and to decreased migration and proliferation abilities of HCC cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.