Abstract
Osteoporosis is characterized by a progressive increase in bone fragility, leading to low bone mass and structural deterioration of bone tissue. MicroRNA-155 (miR-155) is highly expressed in osteoporosis. Thus, the current study aimed to investigate the effect of miR-155 on the inhibition of osteoclast activation and bone resorption by targeting leptin receptor (LEPR) through the adenosine monophosphate activated protein kinase (AMPK) pathway in alendronate-treated osteoporotic mice. An osteoporosis mouse model was established to examine the bone tension and bone density and the expression of miR-155 in osteoclasts. Binding sites between miR-155 and LEPR were verified. Osteoclasts in the treatment group were transfected with different mimic, inhibitor, vector, or siRNA for subsequent experiments. The expression of miR-155, LEPR, AMPK, p-AMPK, RANKL, OPG, M-CSF, RANK, TRAP, Bax, Bcl-2, and the contents of TNF-α and IL-1β were all examined. The proliferation and bone resorption of osteoclasts were also detected. Mice with osteoporosis exhibited decreased bone density and bone tension, along with elevated expression of miR-155. LEPR was verified as a target gene of miR-155. Down-regulated miR-155 was found to increase the expression of LEPR, AMPK, p-AMPK, OPG, Bax, decrease expression of TNF-α, IL-1β, RANKL, M-CSF, RANK, TRAP, Bcl-2, inhibit the cell proliferation and bone resorption of osteoclasts. Taken together, decreased miR-155 up-regulated LEPR via activation of AMPK, which ultimately repressed osteoclast activation and bone resorption of osteoclasts in alendronate-treated osteoporotic mice.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have