Abstract

BackgroundAlzheimer’s disease (AD) is a progressive neuro-degenerative disease with a major manifestation of dementia. MicroRNAs were reported to regulate the transcript expression in patients with Alzheimer’s disease (AD). In this study, we investigated the roles of miR-138, a brain-enriched miRNA, in the AD cell model.MethodsThe targets of miRNA-138 was predicted by bioinformatic analysis. The expression levels of DEK at both mRNA and protein levels were determined by qRT-PCR and Western blot, respectively. Luciferase assays were carried out to examine cell viabilities. Hoechst 33258 staining was used to detect cell apoptosis.ResultsOur results demonstrated that the expression levels of miR-138 were increased in AD model, and DEK was a target of miR-138. Overexpression of miR-138 in SH-SY5Y cells obviously down-regulated the expression of DEK in SH-SY5Y cells, resulting in the inactivation of AKT and increased expression levels of proapoptotic caspase-3. MiR-138 mediated-suppression of DEK increased the susceptibility of cell apoptosis.ConclusionsMicroRNA-138 promotes cell apoptosis of SH-SY5Y by targeting DEK in SH-SY5Y AD cell model. The regulation of miR-138 may contribute to AD via down-regulation of the DEK/AKT pathway.

Highlights

  • Alzheimer’s disease (AD) is a progressive neuro-degenerative disease with a major manifestation of dementia

  • We focused on exploring the inner associations of miR-138, DEK oncogene and AKT, and other factors that lead to apoptosis in AD cell model, which was established using Aβ1-42 in SH-SY5Y cells

  • The expression levels of miR‐138 were increased in AD model qRT-PCR was carried to measure the expression levels of miR-138 in AD model

Read more

Summary

Introduction

Alzheimer’s disease (AD) is a progressive neuro-degenerative disease with a major manifestation of dementia. There are a large number of Alzheimer’s disease-related dementia patients all over the world, and they are usually accompanied by memory loss and behavioral changes, especially in older adults [26]. It has a complex progression involving neuronal dysplasia, angiogenic changes, and release of inflammatory mediators [33]. MicroRNAs (miRNAs) are small non-coding RNAs with molecular regulation functions in protein metabolism, cell apoptosis, and many other neurobiological processes [28]. Their functions in cell apoptosis show great potentials as regulating factors to alleviate cell death for AD patients.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call