Abstract

Atherosclerosis is a systemic disease affecting the whole arterial tree of the human body, and it is the leading cause of cardiovascular diseases.Vascular smooth muscle cells (VSMCs) have been identified to play a key role in the development of atherosclerosis. MicroRNAs (miRNAs) are a group of endogenous small non-coding RNAs, and they play a critical role in many biological processes including regulating cell proliferation, migration and apoptosis. However, till now, the expression and role of miR-133b in atherosclerosis remain largely unknown. Therefore, our purpose was to investigate the expression and role of miR-133b in atherosclerosis and to explore the underlying mechanism. The results showed that miR-133b was down-regulated in the blood and vascular plaque tissues of rabbits with atherosclerosis. Matrix metallopeptidase 9 (MMP-9) was a direct target of miR-133b. In addition, our data indicated that miR-133b mimic could significantly inhibit rVSMC cell proliferation activity, migration ability and induce cell apoptosis compared with the control group, and all these effects were reversed by MMP-9-plasmid. Taken together, these findings highlight an important role for miR-133b/MMP-9 axis in atherosclerosis. And miR-133b might be a valuable clinical marker and therapeutic target for atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.