Abstract

The structure of fibrin plays an important role in the organization of thrombi, the development of atherosclerosis, and restenosis after PTCA. In this study, we examined the mechanisms of the migration of vascular smooth muscle cells (SMCs) into fibrin gels, using an in vitro assay system. Cultured SMCs from bovine fetal aortic media migrated into fibrin gels prepared with thrombin, which cleaves both fibrinopeptides A and B from fibrinogen, without other chemotactic stimuli. Both desA fibrin gels prepared with batroxobin, which cleaves only fibrinopeptide A, and desB fibrin gels prepared with Agkistrodon contortrix thrombin-like enzyme (ACTE), which cleaves only fibrinopeptide B, similarly induced the migration of SMCs compared to fibrin gels prepared with thrombin. These results suggest that the cleavage of fibrinopeptides is not necessary, but rather that the three-dimensional structure of the gel may be important for the migration of SMCs. Furthermore, gels prepared with protamine sulfate, which forms fibrin-like gels non-enzymatically, similarly induced the migration of SMCs compared to the gels prepared with thrombin. Both anti-fibrin(ogen) fragment D and anti-fibrin(ogen) E antibodies inhibited the migration of SMCs into fibrin gels, suggesting that both the D and E domains of fibrin(ogen) are involved in the migration of SMCs into fibrin gels. The addition of GRGDS, a synthetic RGD-containing peptide, but not that of GRGES, a control peptide, partially inhibited the migration of SMCs into fibrin gels, suggesting that the migration of SMCs into fibrin gels is at least in part dependent on the RGD-containing region of the α chain. The migration of SMCs into fibrin gels was also inhibited by a monoclonal antibody for integrin αvβ3 and α5β1, indicating that migration is dependent on these integrins. Furthermore, both fibrin(ogen) fragments D and E inhibited the migration of SMCs into fibrin gels, suggesting that these fragments, generated during fibrino(geno)lysis, may be relevant in the regulation of SMC migration into fibrin gels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call