Abstract

Increasing evidence has suggested that microRNA-133b (miR-133b) is important in regulating the genesis of different types of cancer. However, the effects and the underlying mechanisms of miR-133b in the development of glioblastoma (GBM) remain largely unknown. The aim of the present study was to investigate the role of miR-133b in GBM and to determine the molecular mechanisms underlying its action. Reverse transcription-quantitative polymerase chain reaction was used to measure the expression levels of miR-133b in 21 human GBM samples and 9 normal brain tissue samples. A wound healing assay, and Transwell migration and invasion assays were used to evaluate the effects of miR-133b on cell migration and invasion. Western blotting and a luciferase reporter assay were used to identify the target genes of miR-133b. It was found that miR-133b suppressed GBM cell migration and invasion, and matrix metalloproteinase 14 (MMP14) was identified as a direct target gene. In conclusion, miR-133b may suppress GBM migration and invasion through directly targeting MMP14, highlighting its potential as a novel agent for the treatment of GBM invasion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.