Abstract

A short tandem repeat (STR) polymorphism in the 3'UTR region of esophageal cancer-related gene 2 (ECRG2, also known as SPINK7) has been widely reported to be associated with the incidence and the prognosis of esophageal squamous cell carcinoma (ESCC). This study explores how the microRNA binding to the STR region affects ECRG2 expression in ESCC. Dual-luciferase reporter assays were used to verify the effects of the four microRNAs (miR-580, miR-1182, miR-1272, and miR-1322) predicted to bind the STR region of the ECRG2 3' untranslated region (UTR). The expression of identified effective microRNA was then analyzed in 44 paired ESCC and adjacent normal tissues and 402 case-controlled serum samples (divided into a discovery group and an independent validation group) by real-time RT-PCR assay. We found that only miR-1322 could significantly down-regulate the ECRG2 with TCA3 allele (P < 0.01), but it could not down-regulate the ECRG2 with TCA4 allele significantly (P > 0.05). MiR-1322 was also expressed significantly higher in ESCC tissue and serum samples than in controls (both P < 0.01). Additionally, serum levels of miR-1322 yielded an under receiver operating characteristic (ROC) curve area of 0.847 (95% CI, 0.795-0.890) for discriminating ESCCs from healthy controls in the discovery group and a similar result was obtained in the validation group (under ROC area is 0.845; 95%CI, 0.780-0.897). We conclude that miR-1322 can regulate ECRG2 in an allele-specific manner and that serum levels of miR-1322 can serve as a potential diagnostic biomarker for patients with ESCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call