Abstract
A new method for focusing ultrasound energy in brain tissue through the skull is investigated. The procedure is designed for use with a therapeutic transducer array and a small catheter-inserted hydrophone receiver placed in the brain to guide the array's focus. When performed at high-intensity, a focal intensity on the order of several hundred watts per centimeter-squared is achieved, and cells within a target volume are destroyed. The present study tests the feasibility and range of the method using an ex vivo human skull. Acoustic phase information is obtained from the stationary receiver and used to electrically shift the beam to new locations as well as correct for aberrations due to the skull. The method is applied to a 104-element 1.1 MHz array and a 120-element 0.81 MHz array. Using these array configurations, it is determined that the method can reconstruct and steer a focus over a distance of 50 mm. Application of this minimally invasive technique for ultrasound brain therapy and surgery also is investigated in vitro with a 64-element 0.664 MHz hemisphere array designed for transskull surgery. Tissue is placed inside of a skull and a catheter-inserted receiver is inserted into the tissue. A focus intense enough to coagulate the tissue is achieved at a predetermined location 10 mm from the receiver, the maximum distance that this large element array can electronically steer the focus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.